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Abstract—The ability to simulate the effect of turbulence on 
the phases and amplitudes of laser beams will aid the 
development of a practical synthetic aperture ladar (SAL). 
Simulations can obtain results in areas of interest that are 
resistant to theoretical investigation. Modeling turbulence 
with phase screens and using Fourier propagation can 
achieve the requisite simulation accuracy in reasonable 
computation time. Where possible, simulation results are 
compared to theoretical expectations. Tutorial information 
on generating random phase screens in a computationally 
efficient and conceptually simple way from a Kolmogorov 
(or any other) turbulence power spectrum is provided.  
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1. INTRODUCTION 

The type of synthetic aperture ladar (SAL) discussed here is 
the exact optical analogy of synthetic aperture radar (SAR), 
and a reasonable degree of familiarity with SAL and SAR 
terminology and techniques is assumed. The interested 
reader is referred to Lucke and Rickard[1] for an 
introduction that serves as a lead-in to this topic, and/or to 
any of many SAR books[2,3]. In the past few years, some 
steps on the theory and practice of a practical SAL have 
taken place[1,4,5,6,7]. One of the most obvious 
impediments to such a system is the effect of atmospheric 
turbulence. Theoretical treatment of the impact of 
turbulence on SAL[7] is limited to the estimation of 
averages and does not extend reliably to the high-turbulence 
regime.  

This paper describes a computer simulation of the effects of 
random realizations of turbulence. It is critical to any such 
simulation that both the phases and amplitudes of the 
transmitted and return beams be accurately reproduced so 
that the phase-sensitive heterodyne detection overlap 
integral can be accurately calculated. Other remote sensing 
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laser applications do not require that phase be preserved. 
For example, coherent lidars are used to probe atmospheric 
constituents and use heterodyne detection as a sensitive 
means of measuring the return signal, but do not keep track 
of phase because the return comes from a substantial range 
of depths in the atmosphere, so that phase is averaged out. 
Thus the overlap integral in Belmonte’s[8] Eq. (1) involves 
only beam intensities, not their phases and amplitudes.  

Fried[9] considered heterodyne detection of a light beam 
that has been corrupted by passage through a turbulent 
atmosphere and derived the celebrated Fried parameter, r0, 
that describes the diameter of a coherence patch of the 
atmosphere. The value of r0 sets a point of diminishing 
returns on the physical aperture of an optical sensor 
(whether using a normal or heterodyne detector): increasing 
the aperture size beyond this point does not yield much 
improvement in signal or in resolution. Fried did not 
consider the phase-preserving part of optical heterodyne 
detection, but his results are applicable to SAL as far as they 
go. Karr[7] extended Fried’s analysis to SAL and derived 

0r%, the equivalent of the Fried parameter for SAL. For the 
monostatic case (all that will be considered here), 0r% = 
r0/26/5 = r0/2.3. So, from Eq. (6.13) of Fried, 
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where λµ is the wavelength in microns, R is the range, and 
Cn

2 is the conventional descriptor of turbulence. Karr found 
that as the length of the synthetic aperture approaches and 
exceeds 0r%, the resolution of the SAL stops improving. This 
paper supports Karr’s assessment with the qualification that 
the term “resolution” as used by him is something of a 
misnomer. I will argue theoretically in Sec. 2 and show by 
simulation in Sec. 3 that Karr’s measure of resolution 
actually measures a combination of resolution and contrast. 
The distinction between them is hard to make in Karr’s 
theoretical analysis, but is readily apparent in simulations.  

An effect of the atmosphere that certainly has the potential 
to harm SAL resolution is shot-to-shot piston variation over 
the beam footprint, where the “shot” referred to is from the 
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laser that illuminates the scene. Piston effects are irrelevant 
to the basic problem considered by Fried of receiving a laser 
transmission, or to any lidar system that probes the 
atmosphere, but are potentially fatal to SAL. If turbulence is 
sufficiently high, these variations will disrupt the output of 
the phase-history matched filters used to form an image. But 
piston, by definition, is constant over the footprint for each 
shot, hence constitutes exactly the kind of error that SAR 
signal processing techniques have been developed to 
correct. I will show below that the same technique works for 
SAL, as expected, but it remains to be seen how well the 
technique can be applied in reality when the piston errors 
must be estimated from the scene, instead of being 
calculated in a simulation, and how far into turbulence the 
method can be pushed.  

The well-known fact that a wave front tilt error displaces or 
distorts an image without degrading resolution applies also 
to SAL. When a monostatic SAL system transmits a pulse, 
atmospheric tilt of the wave front causes the beam to strike 
the ground at a point different from the aim point, but retro-
reflected light then retraces its path to the receiver and is 
detected with no tilt-induced loss of efficiency.  

 
2. DEFINITIONS OF RESOLUTION 
I begin this discussion by noting that the proper description 
of a coherent imaging system is provided by its impulse 
response (IPR), while an incoherent system is described by 
its point spread function (PSF), which is the squared 
magnitude of the IPR. In SAR terminology, the squared 
magnitude is often referred to as the power IPR. The 
frequency response of a coherent system is the Fourier 
transform of the IPR, while that of an incoherent system is 
the Fourier transform of the PSF[10], which is the OTF 
(optical transfer function), and the magnitude of the OTF is 
the MTF (modulation transfer function). The definition of 
resolution for an optical system used by Karr is taken from 
Eq. (8.6-38) of Goodman[11] with different notation:  
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where J

r
 is a two-dimensional spatial-frequency variable, 

the brackets denote an ensemble average, and M( J
r

) is 
properly the OTF, but referred to by Karr as the MTF. Note 
that larger Res means better resolution. A more conventional 
definition of resolution is the full width at half maximum 
(FWHM) of the PSF. Smaller FWHM means better 
resolution. As discussed by Karr, turbulence does not affect 
the system in the range coordinate, so any degradation of 
resolution indicated by Eq. (2) applies to the azimuth 
coordinate. In this paper, I use FWHM in reference only to 
the azimuthal PSF, so, if Eq. (2) is a good measure of 
resolution, we expect to find that  
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The FWHM of the PSF is determined primarily by the width 
of the region of support of the MTF, i.e., by Jmax, while the 
values of the MTF within that region determine contrast. In 
principle, contrast can be restored with image processing 
techniques that boost the value of the MTF, while loss of 
resolution due to a decrease in Jmax is unrecoverable. (The 
distinction between resolution and contrast is readily 
apparent, and their dependence on the structure of the MTF 
can be easily explored, by analyzing the MTF of sparse 
aperture imaging systems, a subject to which the interested 
reader is referred[12].) Thus the definition of resolution 
given in Eq. (2) can be criticized on the grounds that it fails 
to distinguish between loss of resolution, as measured by 
FWHM, and loss of contrast. The integral in Eq. (2) might 
better be called a measure of image quality than of 
resolution.  

Eq. (2) can also be criticized on the grounds that the MTF is 
derived from the PSF, not the IPR, hence is not appropriate 
for a coherent system. This criticism is mitigated by the fact 
that Karr develops expressions for the SAL MTF only to 
obtain the measure of resolution given in Eq. (2), not to 
describe the frequency response of the system.  

 
3. THE SIMULATION: INPUTS AND RESULTS 
This paper reports the simulation of the relatively simple 
case of a SAL operated from a low-altitude air-borne 
platform at a range of 10 km from the observed point on the 
ground. For this initial exercise, turbulence is constant along 
the light path, rather than given a different value at each 
phase screen. Monostatic, spotlight mode operation is 
simulated with 11 laser shots, spaced 2 cm apart. At a flight 
speed of 100 m/sec, this implies a synthetic aperture length 
of 20 cm, an imaging time of 2 ms, and a 5 KHz PRF. 
Turbulence is modeled with 5 phase screens, spaced 2 km 
apart, a spacing that easily satisfies the criterion set out in 
the Appendix [Eq. (A33)] for Cn

2 ≤ 3×10-16 m-2/3. With these 
parameters and in the absence of turbulence, SA resolution 
exceeds the diffraction-limited resolution of the physical 
aperture by a factor of 10. A purely side-looking line of 
sight is assumed, but the simulation can accommodate a 
squint angle, if desired. An ideal flight path is assumed, but 
platform motion errors can be modeled by introducing the 
appropriate phase errors. The frequency chirp of the 
transmitted beam is not modeled: it is assumed that the 
deramp frequency from a given range is pure and 
immutable, uncorrupted by any effects of imperfect 
hardware. With the relatively small grid sizes used here 
(128×128), the simulation runs fast: the data for Figures 6 
and 7, for examples, took less than 1 minute to create on a 
Pentium 4 machine.   
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Simulation parameters  

λ = 1.5 µ 
D = 4 cm  physical aperture diameter 
wo = 1.8 cm transmitted Gaussian beam waist 
LSA = 20 cm synthetic aperture length 
R = 10 km range to scene 
F = 40 cm ground footprint diameter 
 
Phase screen parameters (see Appendix) 

∆x = 1 cm grid sample spacing  
S = 1.28 m  side of square column through atmos. 
KL = 2π/S lowest DFT frequency  
KH = 2π/(2∆x) highest DFT frequency  
KO = 2π/(20 m) turbulence outer scale frequency  
KI = KH  turbulence inner scale frequency  
 
The simulation begins with a Gaussian-profile beam of laser 
light with wavelength λ transmitted from an aperture of 
diameter D = 2.25wo, where wo is the initial Gaussian beam 
waist (this D/wo ratio maximizes intensity at the center of 
the beam in the far field, for fixed D). The system is 
monostatic: the same aperture is used for reception. The 
beam immediately encounters a phase screen (see 
Appendix) and is then Fourier propagated[10,13] to the next 
phase screen. There are five phase screens, at 2-km 
intervals, with the ground 2 km beyond the last screen, for a 
total propagation distance of 10 km. (There is no need to put 
a screen at the ground because that would just make it part 
of the scene, which has phase-random reflectivity anyway.)  

The beam illuminates a region on the ground – the 
“footprint” – and the phase and amplitude of this 
illumination at a point object in the footprint is recorded. 
Speckle can be simulated by assigning a random complex 
reflectivity to the object, but that is not done in this 
simulation. In reality, the light reflected from this point 
object would spread out spherically on its return to the 
receiver, but a wave front that propagates into 2π steradians 
cannot be modeled with Fourier propagation. Instead, its 
phase and amplitude are bestowed upon a second Gaussian 
beam that is launched from the object point and returned 
through the same set of phase screens to the receiver. The 
initial waist of this beam is chosen so that its wave front 
spreads out over an area considerably larger than the 
receiving aperture. This provides a means of modeling the 
effect of the atmosphere on the received part of the return 
wave. The part of the wave front intercepted by the 
receiving aperture is cut out, zero padded[14], and Fourier 
transformed to find the phase-and-amplitude distribution in 
the focal plane. The same operation is carried out on an 
assumed local oscillator beam that is also presented to the 
receiving aperture, and the heterodyne signal is calculated 
via  

 *

d

LO Ret
A

Sig E E dxdy= ∫    , (4) 

 
where LO = local oscillator, Ret = return, and the integral is 
over the area of a detector. Eq. (4) describes the return from 
one range resolution element in the footprint, i.e., in one 
frequency band in the output of the detector. If the signal for 
another range element is desired, an object (or objects) can 
be placed at the appropriate point(s) in the footprint and the 
simulation repeated.  

Spotlight-mode operation is simulated by imposing 2 cm of 
relative motion between the platform and the first phase 
screen between shots of the laser. Phase screens closer to the 
target are shifted by proportionately smaller amounts and 
the footprint on the ground does not move. The range is kept 
constant, so flight along a curved path is simulated. (The 
simulator can easily accommodate a different path by the 
appropriate phase corrections.)  

Figure 1 (next page) shows beam amplitude at the ground 
for the case of no turbulence. I plot amplitude, not intensity, 
because that is what determines the measured signal. Figure 
2 shows the effect of the indicated turbulence level: 
substantial fluctuations in amplitude are present. The phase 
of the wave front whose amplitude is depicted in Fig. 1 is a 
perfect paraboloid and is shown as the dotted line in Figure 
3. The phase of the wave front from Fig. 2 is shown as the 
solid line, and can be seen to be disturbed by the 
atmosphere. The dotted line has been displaced by a piston 
term so that the phases at the center of the figure are the 
same. Observe that the shape of the two curves is nearly the 
same: the main difference is that the curvature of the 
disturbed beam is slightly less than that of the undisturbed 
beam. This is due to the combined effects of the large-scale 
focus (quadratic) component of the atmosphere [Eq. (A26)] 
and of the local quadratic properties of the screens (see 
Figure A1). Higher-frequency phase errors, readily visible 
near the center of Fig. 3, are small. Fig. 3 shows that, after 
piston and tilt, the dominant effect of the atmosphere on the 
wave front is an overall quadratic term which acts to change 
the curvature of the wave front. The knowledge that the 
dominate phase errors caused by turbulence are of this type 
should be of considerable use in the development of SAL 
focusing algorithms.  

It is surprising that the substantial amplitude fluctuations of 
Fig. 2 are accompanied by the rather benign phase 
disturbances of Fig. 3. Physical insight into the reason why 
phase is more robust than amplitude in the presence of 
turbulence can be gained by examination of Figure 4. If we 
assume that passage through the atmosphere adds a complex 
error term that has half the amplitude of the undisturbed 
field, then the amplitude can be increased by a factor of 1.5 
if the error adds constructively and reduced by factor of 2 if 
it adds destructively, but the maximum phase error that can 
be introduced is only 30°. It is well known in SAR signal 
processing that phase errors of 30° or less do not 
substantially degrade an image. Amplitude variations of 
×1.5, ÷2, imply intensity variations of ×2.25, ÷4, and it is 
intensity variations that are considered in the assessment of 
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turbulence effects on most systems. But SAL depends on 
phase and amplitude, especially phase, and may therefore be 
less disrupted by turbulence than experience with other 
systems might suggest.  

 

 

 

Figure 1. Laser beam amplitude (not intensity), 
shown relative to unity at the center of the 
transmitting aperture, on a surface that is 
perpendicular to the beam, at a distance of 10 km 
for zero turbulence. The central part of the beam, 
defined by -20 ≤ x, y ≤ 20, is one resolution 
element of the physical aperture and is used as the 
beam footprint for SAL simulations. 

 

 

 

 
 
Figure 2. Same as Fig. 1, but with the indicated 
turbulence. Amplitudes generally differ from Fig. 
1 by factors of 2 or less.  

 

 
Figure 3. The wave front phases from Fig. 1 
(dotted line) and Fig. 2 (solid line). A piston term 
has been added to the dotted line so that the lines 
match at the center.  

 

 

 
 

Figure 4. An error of ½ in amplitude can multiply 
amplitude by 1.5 if it adds constructively and by 
0.5 if it adds destructively (not shown), but can 
introduce a phase error of no more than θ = 
sin-1(½) = 30°. 

 

 

The simulation proceeds by firing eleven laser shots, in the 
absence of turbulence, from flight positions separated by 2 
cm, covering a synthetic aperture of 20 cm, with the signal 
from each shot calculated via Eq. (4). This is done for a 
point target at the center of the scene, then for a point target 
1 cm from the center, etc., until a footprint 40 cm across has 
been fully characterized. For each point target, the 11 
signals from Eq. (4) are reciprocated to obtain the matched 
filter that will pick out an object at that point in the scene. 
The same shot sequence is then repeated with or without 
turbulence and the returned signals multiplied by each of the 
filters to obtain an amplitude image which is squared to 
yield an intensity image.  

Figure 5 shows two such images: the power IPR for a point 
object at the center of the footprint in the absence of 
turbulence (dotted line) and the image of a scene composed 
of two point objects, one at 0 cm and one at 10 cm, for a 
fairly low level of turbulence (solid line). Observe that 

Amplitude = 1 Error = ½
θ 
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resolution, as measured by the FWHM of the peaks, is 
virtually unaffected. This is expected from Karr’s results 
because 0r% = 52 cm for this case, while the length of the 

synthetic aperture is LSA = 20 cm. With a ratio LSA/ 0r% = 
20/52 ≈ 0.4, Karr predicts a negligible loss of resolution. 
Contrast does suffer slightly, because the background is 
higher.  

 
Figure 5. The dotted line is the power IPR (also 
known as the PSF) in the absence of turbulence for 
a point object at the center of the scene. The solid 
line is the image, after SA processing, but without 
phase correction, of a scene composed of two point 
objects, one at 0 cm and one at 10 cm. Observe 
that both peaks are displaced to the left by about 1 
cm, showing that distortion (tilt) is nearly constant 
over the footprint. 

 

Figure 6 shows an image of the same scene with fairly high 
turbulence; 0r% = 7 cm in this case and LSA/ 0r% = 2.9, for 
which Karr predicts a factor-of-three loss in resolution and 
Eq. (3) says that the same factor should apply to our 
FWHM. The combination of phase and amplitude errors 
have made the scene virtually unrecognizable, but the width 
of the peaks has not increased much, while contrast has 
suffered substantially. Thus, image quality is severely 
degraded, but resolution has not suffered much. With the 
simulator (as opposed to reality!) it is easy to keep track of 
the phase errors, and this was done for the object at the 
center. The phase corrections thus determined were then 
applied to the whole data set with the result shown in Figure 
7: both objects now appear with essentially undiminished 
resolution and with much better contrast. That both objects 
have been recovered with the same phase correction shows 
that the phase errors are mostly constant across the 
footprint, exactly the case that SAR autofocus processing 
has been developed to handle. Methods of finding phase 
errors of this type from real data have received much 
attention for SAR and should be, to some extent at least, 
transferable to SAL. The heights of the peaks differ from 
unity because of the net effect of amplitude fluctuations in 

the signal. Unlike phase errors, net amplitude errors are not 
correctable because it is impossible to separate them from 
the unknown reflectivity of the object.  
 

 
Figure 6. Same as Fig. 5, but at a higher level of 
turbulence.  

 
 

 
Figure 7. Data from Fig. 6, with phase correction 
applied. Observe that the separation between the 
peaks is about 11 cm, showing that some within-
scene distortion is present.  

 
 
4. CONCLUSION 
The first results of a simulation of SAL performance have 
been presented. Future work includes an assessment of how 
phase screen parameters can be optimized to give good 
results in short computation times, with the primary aim of 
extending results to ranges up to 100 km. Preliminary 
investigation indicates that reducing the phase screen 
sample spacing below the 1 cm used here does not 
materially affect the results and that a larger spacing may be 
reasonable. Since the inner scale length of turbulence is 
rarely suggested to be smaller than a few mm, this seems 
reasonable. Also, the fewer phase screens that are used, the 
faster a simulation can run, so the criterion stated in Eq. 
(A33) needs thorough investigation.  
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Beyond these considerations, this simulation is ready to help 
address the engineering trade-offs necessary to the 
construction of a practical SAL. One of the most 
fundamental is the trade-off between 1.5 µ and 10 µ light. 
Eq. (1) shows that the coherence patch size of the 
atmosphere scales as λ6/5, while, for the same resolution, the 
length of the synthetic aperture is proportional to λ. The 
trade-off ostensibly leaves 10 µ light with a λ1/5 = 1.5 
advantage. But how important is this advantage in the actual 
formation of images, especially when the improvements that 
can be implemented with signal processing are included? 
Simulations will strongly aid in answering this question.  
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APPENDIX: MODELING TURBULENCE WITH 
PHASE SCREENS 

A1. Introduction: Modeling Low, Intermediate, and High 
Spatial Frequencies 

The basic method of modeling propagation through the 
atmosphere is to sample the wave front on a square grid, 
apply a discrete Fourier transform (DFT) to obtain the 
wave’s angular spectrum[10], propagate to a phase 

screen[11], inverse transform to obtain the amplitudes 
impinging on the screen, multiply by the phase change 
imposed by the screen, and repeat. The discussion here is on 
modeling the phase screen, which is done by generating a 
random turbulence spectrum in frequency space and inverse 
Fourier transforming to generate the phase screen in real 
space. Ideally, the screen would be large enough to include 
the outer scale of turbulence and its sampling would be fine 
enough to include the inner scale, but since the outer scale 
may be 104-5 times the inner scale, arrays big enough to 
handle the entire range are impractical. The frequencies 
corresponding to the outer and inner scale lengths of 
turbulence, LO and LI, are KO = 2π/LO and KI = 2π/LI. Using 
a grid with side S sampled at N points, the separation 
between points is ∆x = S/N. The lowest frequency 
represented in this grid is KL = 2π/S, and the highest is KH 
=2π/(2∆x) = Nπ/S. In the simulations reported here, ∆x = 
0.01 m, N = 128, and S =1.28 m. LO is taken to be 20 m, so 
KO < KL. The primary effects of the low frequency range KO 
≤ K < KL are a large-scale tilt and focus of the wave front, 
which are modeled separately, as described in Sec. A3. At 
frequencies below KO (most obviously the DC component) 
the power spectrum is set to zero. This simulation uses ∆x = 
1 cm, while LI is generally a few mm, so KI > KH and this 
high frequency range, KH < K ≤ KI, is neglected. The 
intermediate frequency range KL ≤ K ≤ KH can be modeled 
directly [see Eq. (A7)]. The modeling methods for the 
different frequency ranges are summarized in Table 1.  

 
Table A1. 

Frequency  
Definition 

Frequency 
Range 

Phase Screen 
Modeled by 

KO = 2π/LO – Outer Scale Freq.   KO – KL  Tilt & Focus, Sec. A3  
KL, KH – Low, High Freqs. of DFT   KL – KH  Eq. (A7) 
KI = 2π/LI – Inner Scale Freq.   KH – KI  Neglected 

  
 
The contribution to the phase screen of the intermediate 
frequency range is derived in Sec. 2, the contribution of the 
low range in Sec. 3. Sec. 4 describes how the frequency 
components and tilt and focus contributions are randomized. 
Figure A1 (end of Appendix) shows a typical phase screen 
generated as described below and Figure A2 shows the 
phase structure function[9,15] associated with it. The 
structure function matches the theoretical prediction over 
the range of interest in this simulation, which has a beam 
footprint of 0.4 m, showing that the statistics of the phase 
screen are properly constructed. 
 
A2. Intermediate Frequencies from a Randomized 
Turbulence Spectrum 

Notation follows, though not strictly, that of Clifford[15]. 
Unless otherwise stated, λ is expressed in meters throughout 
this Appendix.  

A phase screen models the phase change imposed on a wave 
front by an atmospheric volume V having length Z and area 
S2 in the (x, y)-plane, centered on (x, y) = (0, 0). In this 
simulation, Z = 2,000 m. The desired change in phase angle 
across the screen is  
 

 1
2( , ) ( , , )

Z

x y n x y z dzπ
α =

λ ∫   , (A1) 

 
where n1(x, y, z) is the variable part of the index of 
refraction. Our aim is to generate α(x, y). The 
autocorrelation of n1(x, y, z) is 
 

 
1 1

1 1

( , , ) ( , , ) ( , , )
1 ( , , ) ( , , ) .

V

B x y z n u x v y w z n u v w

n u x v y w z n u v w dudvdw
V

= + + +

= + + +∫∫∫
 (A2) 
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Also 
 

 
3

0( , , ) (2 ) ( , , )

exp ( ) ,

x y z

x y z x y z

B x y z k k k

i xk yk zk df df df

= π Φ ×

⎡ ⎤+ +⎣ ⎦

∫∫∫  (A3) 

 
where the power spectrum of n1 is written as (2π)3Φ0 so that 
the Fourier transform variable is f instead of k. The power 
spectrum is non-zero only over the range KO ≤ K ≤ KI where 
K is the magnitude of (kx, ky, kz).  

Now (2π)3Φ0 ≡ 〈φφ*〉 where φ is the (properly randomized, 
see Sec. A4) spatial frequency spectrum of n1. Eqs. (A2) and 
(A3) imply that 
 

 
11/ 2

1 ( , , )

( , , ) exp ( ) ,x y z x y z x y z

n x y z
V

k k k i xk yk zk df df df

=

⎡ ⎤φ + +⎣ ⎦∫∫∫
 (A4) 

 
so 
 

 
1
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k k k
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V

φ =

⎡ ⎤− + +⎣ ⎦∫∫∫
 (A5) 

 
and 
 

1
1/ 2

1/ 2

( , , )( , , 0) exp ( )

( , ) exp ( ) ,
2

x y x y
Z

x y

n x y zk k dz i xk yk dxdy
V

x y i xk yk dxdy
V

⎡ ⎤φ = − +⎣ ⎦

λ α ⎡ ⎤= − +⎣ ⎦π

∫∫ ∫

∫∫
 (A6) 

 
hence 
 

 1/ 2

( , )
2 ( , ,0) exp ( ) .x y x y x y

x y

V k k i xk yk df df

α =
π ⎡ ⎤φ +⎣ ⎦λ ∫∫

 (A7) 

 
Since α is real, φ must be Hermitian: φ (-kx, -ky) = φ*(kx, ky), 
a minor constraint on the randomization process described 
in Sec. A4. When implemented as a DFT, the integral in Eq. 
(A7) covers only the range KL ≤ K ≤ KH. 
 
Eq. (A7) and Parseval’s relation can be used to find the 
contribution to the mean square phase of any desired part of 
the power spectrum. The total mean square phase is 

 
2

2 2 2

2
3

0

2

2 (2 ) 2 ,
I

O

x y

K

K

dxdy S V df df

V fdf

∗π⎛ ⎞α = α = φφ =⎜ ⎟λ⎝ ⎠

π⎛ ⎞ π Φ π⎜ ⎟λ⎝ ⎠

∫∫ ∫∫

∫
 (A8) 

 
so, taking Φ0 = 0.033Cn

2K-11/3 from Clifford15 (for example) 
and using 0.033 ≈ 1/30, the contribution to 〈α2〉 from 
frequencies modeled by the DFT (lower frequencies are 
treated in Sec. A3) is 
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Thus the contribution to αrms from intermediate frequencies 
is  
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A3. Large-Scale Effects of Low Frequencies 

If S is smaller than an outer scale length, frequencies lower 
than KL = 2π/S cannot be properly modeled with Eq. (A7) 
and a DFT. The effect of these frequencies is modeled 
analytically from the observation that most of the variation 
across a phase screen of a sinusoid with wavelength longer 
than the width of the screen is described by linear and 
quadratic terms. Another way to model these frequencies is 
to use segments of sinusoids that complete less than one 
cycle across the screen, with their amplitudes and phases 
randomized. This is implemented in Fourier space by Lane 
et al.[16], but could as easily and more straightforwardly be 
implemented in real space. The result is a structure function 
that follows the r5/3 law over a broader range of r than 
shown in Fig. A2, but Fig. A2 shows that the r5/3 law is well 
approximated over the range of interest in this simulation, 
which has a beam footprint of 0.4 m. 

A3a. Linear Term ⇒ Tilt 

The primary effect of the disturbance function φ for these 
frequencies is a constant tilt across the wave front. For a 
phase tilt inclined to the x axis, we write a = ∂α/∂x so that 
α(x) = ax is the phase change imposed by the screen. [At x = 
S/2, the phase change is α = aS/2, which means that the 
wave front is advanced by the distance ∆z = αλ/2π = 
aSλ/4π, which means that the angular tilt of the wave front 
is ∆z/(S/2) = aλ/2π.] It follows from Eq. (A7) that  
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so, from Parseval’s relation,  
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Redefining a by a2 ≡ (∂α/∂x)2 + (∂α/∂y)2, Eq. (A12) 
becomes  
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The contribution to mean square tilt from frequencies below 
KL is therefore given by 
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and 
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Taking 〈a2〉 from Eq. (A14), a particular realization of a, 
denoted aR, is obtained by randomizing amplitude according 
to Eq. (A30) (below) with |φ| replaced by a and (2π)3Φ0 
replaced by 〈a2〉. The azimuthal orientation of the tilt is 
chosen as an angle θ, random over (0, 2π), so that the phase 
added to the screen is  
 
 ( , ) cos sintilt R Rx y a x a yα = θ + θ   . (A16) 
 
Now, αtilt,rms = (〈a2〉S2/12)½, so, from Eq. (A15), 
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Eq. (A17) states the rms phase angle due to tilt of the wave 
front, averaged over the square of side S. The rms phase 
angle due to local tilt of the wave front at a single sample 
point can be found by neglecting KO in Eq. (A14) and 
replacing KL by Min(KH, KI) = 2π/Max(2∆x, LI) to find  
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Now, αsample,rms = (〈a2〉∆x2/12)½ and we need αsample,rms ≤ 
2π/14 in order that the sampling error be diffraction limited, 
so from Eq. (A18)  
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which is a condition that the sampling interval, ∆x, must 
satisfy, where the Max function has been replaced by 0.01 
m in the last approximation: since the final expression 
depends only on the sixth root of this value, the 
approximation 0.01 m should be adequate in all cases of 
interest.  
 
A3b. Quadratic Term ⇒ Focus 

The contribution of low frequencies can be refined by 
adding quadratic effects, for which we write bx = ∂2α/∂x2 so 
that α(x) = ½bxx2 is the phase change imposed by the screen. 
It follows from Eq. (A7) that  
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so, from Parseval’s relation,  
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since the average value of cos4θ is 3/8. The quadratic 
contribution from frequencies below KL is therefore  
 

 ( )

( )

24
2 11/ 3 5

2

4 2
7 / 3 7 / 3

2

4 2
7 / 3 7 / 3

2

(2 )
80

(2 ) 3
780

(2 )
,

187

L

L
O

K
n

x K K
K

n
L O

n
L O

CZb K K dK

C Z
K K

C Z
K K

−

<

π
=

λ

π
= −

λ
π

= −
λ

∫

   (A23) 

and 
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Similar expressions can be written for by = ∂2α/∂y2, and bx 
and by are combined into br = (bx

2 + by
2)½, so br,rms =2½bx,rms. 

A particular realization of br, denoted bR, is randomized as 
was aR above. Next, a random angle β is chosen to generate 
bRx = bRcosβ and bRy = bRsinβ. Note that bRx and bRy can 
have opposite signs. Finally, the orientation of the quadratic 
function is again chosen as a random angle θ, so that the 
phase added to the screen for focus is  
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where the last term removes piston. Now, αfoc,rms = (〈bRx

2 + 
bRy

2〉S4/720)½ so, from Eq. (A24),  
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A4. Randomizing the Turbulence Spectrum 

The central limit theorem decrees that, for any particular (kx, 
ky), φ(kx, ky, 0), must be a complex Gaussian random 
number, i.e., has uniform distribution in phase and 
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Note that Φ0 is the average of an exponential distribution:  
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0

1( ) exp( / )PΦ Φ = −Φ Φ
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  , (A28) 

 
where (2π)3Φ = |φ|2. A standard software package generates 
a random number x uniformly distributed over (0, 1), i.e.,  
 
 ( ) 1xP x =  ,  0 ≤ x ≤ 1  .  (A29) 
 
We set argφ = 2π(x – 0.5) to obtain a random argφ 
distributed uniformly over (-π, π). Next we set x = exp[-
|φ|2/(2π)3Φ0] and solve for |φ|, 
 
 3

0(2 ) ln( )xφ = − π Φ   ,  (A30) 
 
to obtain a random |φ| distributed according to Eq. (A27). 
For the benefit of the suspicious reader, we observe from x 
= exp[-|φ|2/(2π)3Φ0] and the fundamental relation P(x)dx = 
P(|φ|)(-d|φ|) that  
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as desired. 
 
A5. Spacing the Screens 

The normal rule for the maximum spacing between phase 
screens is that r0, which is the diameter of a coherence patch 
of the atmosphere, should be at least as large as the diameter 
of the first Fresnel zone of one screen as seen from the next, 
that is,  
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where Z is the distance between the screens. The first 
equality in Eq. (A32) is Eq. (6.13) of Fried7, but with λ 
expressed in meters instead of microns. This quantity is set 
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equal to the diameter of the first Fresnel zone, to yield a 
condition for Z: 
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where λ is again expressed in microns.  
 
 
 

 
Figure A1. Typical phase screen. The overall tilt of 
the surface comes from the tilt term calculated in 
Sec. A3. 

 
 

 
 

Figure A2. The structure function calculated 
statistically from the average of 100 phase screens 
similar to the screen of Fig. A1 (solid line) 
matches theory (dotted line) over region of interest 
here. A single screen does not affect amplitude, so 
the wave structure function and the phase structure 
function are identical. 
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